特米网 > 生活 >
元素的旅程始于大爆炸的刚开始时刻,当时大家的宇宙只有几秒钟到几分钟的历史。
大爆炸模型觉得一场剧烈的爆炸产生了目前的宇宙。(Image credit: Getty images图片来源:盖蒂图片社)
大家都了解宇宙包括很多的元素,从非常轻的气体(如氦气)到非常重的金属(如铅)。但所有些元素都是从哪儿来的呢?
元素的旅程始于大爆炸的刚开始时刻,当时大家的宇宙只有几秒钟到几分钟的历史。当时,整个宇宙被塞进了一个比今天小数百万倍的体积中。因为密度高得让人很难置信,宇宙中所有物质的平均温度远远超越十亿度,这足以发生核反应。事实上,它是这样之热,以至于即便是质子和中子也没办法作为稳定的实体存在。相反,宇宙只不过一片更基本的粒子的海洋,称为夸克和胶子,在原始等离子体状况下沸腾。
但宇宙不会长期维持这种状况。它正在膨胀,这意味着它也在冷却。最后,夸克可以结合在一块形成第一个质子和中子,而不会立即被摧毁。质子比中子略轻,这使它们在粒子产生的初始阶段具备优势。宇宙诞生了几分钟后,它就因为温度较低而没办法产生新的质子和中子。因此,这类重粒子是宇宙制造的唯一一批粒子(除去将来罕见的高能相互用途)
当重粒子最后形成后,大约每一个中子会随着有六个质子。这类中子本身并不稳定;它们的半衰期约为 880 秒。随即,一些中子开始衰变,而尚未衰变的中子开始与质子结合形成第一批原子核。在所有轻元素中,由两个质子和两个中子组成的氦-4具备最大的结合能,这意味着它最易形成,最难分解。因此,几乎所有这类中子都用于生产氦-4。
通过如此的计算,宇宙学家可以预测,宇宙开始时大约有75%的氢(这只不过一个裸露的质子)、25%的氦和少量锂的混合物——这正是天文学家察看到的。
恒星核聚变合成
元素出现的下一阶段需要等待第一代恒星,直到大爆炸后数亿年才开始发光。恒星通过核聚变为自己提供动力,将氢转化为氦。这个过程会留下一点点能量。但恒星有这样多的氢气,它们可以燃烧数十亿年,有时甚至是数万亿年。
在生命的尽头,像太阳如此的恒星转而核聚变氦,在它们作为行星状星云死亡之前将它转化为碳和氧。这就是为何碳和氧在宇宙中这样丰富是什么原因;继氢和氦之后,它们是最容易见到的元素。事实上,氧是地球上最容易见到的元素,尽管它大多数与硅酸盐结合形成你脚下的土地。
水平更大的恒星——那些水平至少是太阳八倍的恒星——在其核心中融合了更重的元素。尤其是在它们生命周期的最后几周、几天甚至几个小时里,宇宙中水平最大的恒星会产生氮、氖、硅、硫、镁、镍、铬和铁。
这是恒星内元素形成的终点——它们强大的能量可以产生较重的元素,但要形成任何一种高于铁的元素会消耗能量,而不是产生能量,因此这类更重的元素极少出目前大水平恒星的核心中。
元素周期表中比铁重的元素是在恒星死亡时产生的,它们通过各种迷人、复杂和壮观的方法产生。较小的恒星慢慢地将它们核反应区中的物质向外喷射,这类物质将喷洒到它们的恒星系统中。较大的恒星将会产生超新星爆炸。这两种死亡都会留下残余——小恒星会留下白矮星,白矮星几乎完全由碳和氧组成;较大的恒星会留下让人很难置信的致密中子球,称为中子星。
来自伴星的气体可以被白矮星吸收,致使它引发超新星爆炸。中子星的碰撞,会产生千新星并释放出巨大的能量。
无论怎么样,所有这类过程都涉及很多的辐射、很多的能量和很多高速飞行的粒子——换句话说,这是塑造新元素的完美汤。正是通过这类灾难,元素周期表的其余部分才应运而生。
也正是通过这类高能事件,这类元素飞跃了它们的母星的界限,进入了星际混合体。在那里,这类元素加入了新的气体云,这类气体云最后合并形成新一代的恒星,这类恒星继续元素循环和再生,慢慢地丰富了整个宇宙。
BY:Paul Sutter
如有有关内容侵权,请在作品发布后联系作者删除
转载还请获得授权,并注意维持完整性和注明出处
- 上一篇:外科手术的得力助手,来自国际空间站
- 下一篇:没有了
猜你喜欢
- 2024-03-24 天有不测风云? 三分钟,带你揭开“气象万千”的神秘面纱
- 2024-03-14 2024徐州春天文旅系列活动持续时间
- 热点排行
- 热门推荐
- 热门tag